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The Dirac-Van Vleck-Serber permutation degeneracy method is used 
to demonstrate that the Heisenberg spin exchange Hamiltonian, 24rex= 
-2J12~1.~2, is a good approximate Hamiltonian for the theoretical in- 
terpretation of antiferromagnetic and ferromagnetic systems. The approach 
does not neglect double or higher-order permutations and covers the general 
case of a single N-electron configuration as well as that of configuration 
interaction. An analogy between antiferromagnetic and hydrogen-molecule-like 
systems is established, and a formula for the estimation of the Heisenberg 
exchange integral is derived. 
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1. Introduction 

The antiferromagnetic and ferromagnetic coupling between the spins of unpaired 
electrons on proximate centres is a subject on which there is a plethora of 
experimental data. Not surprisingly, therefore, there has been a similar abundance 
of theoretical papers on this subject. Apart from situations in which the problem 
corresponds to putative bond formation (as in the hydrogen molecule) the 
phenomenon has proved a difficult one for which to obtain an entirely satisfactory 
theoretical picture. Typical is the problem of two transition metal ions separated 
by a, formally, closed shell anion, the system being either linear or bent with an angle 
of ninety degrees. Fundamental here is the work of Anderson [1, 2], of Kanamori 
[3], of Goodenough [-4, 5], and of Keffer and Oguchi [6]. The relationships 
between the approximations made by these various workers has been clarified more 
recently by the work of Huang and Orbach [7 9]. Even if the details are frequently 
somewhat obscure the general picture that emerges is clear. The energy separation 
between the high spin and low spin states that is associated with the phenomenon 
called antiferromagnetism is a small one. Relatively small contributions to this 
separation may therefore be important. This means that even apparently innocuous 
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approximations must be regarded with suspicion. Thus, the neglect of cation-cation 
overlap in situations such as those described above is a weakness in the Anderson 
model. Although it is clear that Configuration Interaction (CI) (between states 
based on localized orbital configurations) is of paramount importance, the extent to 
which such interaction has been included is somewhat limited. The major part of the 
work to date has been as much algebraic as numerical, a feature which has limited CI 
to that involving valence-shell basis functions. It may well be that the inclusion of 
more excited states, such as may be used to include the effects of polarization, would 
show that they make significant contributions to the small energy gap under study. 
However, the difficulty of extensive inclusion of excited states (including continuum 
states) is well known. In this uncertain theoretical situation the experimentalist has 
resorted to the use of spin Hamiltonians and addressed himself to the measurement 
of the parameters involved. The theoretical uncertainty is then reflected in the 
uncertain relationship to be expected between the values of the spin Hamiltonian 
parameters measured in different systems. The use of such spin Hamiltonians finds 
justification in the work of McWeeny and Yonezawa [10], who considered a rather 
general many-electron system. However, in their work they neglected double and 
high-order electron permutations. In the present paper we demonstrate that with 
inclusion of these terms the spin-Hamiltonian approach remains valid and, 
incidentally, give an improved general formulation of the "exchange integral" of the 
spin Hamiltonian. Before embarking upon this part of our work, it is convenient 
first to briefly review the Heisenberg exchange integral for hydrogen-molecule-like 
systems. 

2. The Hydrogen-Molecule Approach 

2.1. Introduction 

In discussions of the mechanism of antiferromagnetic coupling between transition 
metal ions the hydrogen molecule occupies a unique role. This is because the 
energies of the lowest lying spin singlet and triplet states may be simply evaluated 
and the factors determining their separation readily enumerated. The belief that, 
mutatis mutandis, similar factors will be involved in more complicated states has 
been an important guiding factor in the theoretical treatment of such systems (the 
analogy with dimeric copper(II) systems is particularly clear). However, the validity 
of the assumption of the direct applicability of the hydrogen-molecule treatment to 
such systems has not been examined in detail. This is because in these extensions the 
single Valence Bond (VB) theory has to be extensively modified firstly because of the 
common presence of intervening anions and secondly because of the inclusion of 
excited electronic configurations involving charge transfer. 

In this section we summarize the pseudo-hydrogen-molecule approach to the 
problem of exchange interactions in antiferromagnetic and ferromagnetic systems; 
within this scheme a spin-Hamiltonian formulation of the case of non-orthogonal 
basis functions will be developed, and a comparison made with the well known 
orthogonal case. 
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2.2. The Energy of the Hydrogen Molecule (Valence-Bond Treatment) 
The simple VB t rea tment  s of  the hydrogen molecule [12, 13] gives the energy of  the 
lowest spin singlet and the lowest spin triplet as 

Q+_J 1/3E = 2E H -~ 1 + S  ~ (1) 

Here,  2E H is the energy of  two non-interact ing hydrogen a toms  and S, Q and J are 
the overlap,  C o u l o m b  and exchange integrals respectively defined by 2 

S =  ( l s , (1 )  I lsb(2)), 

+ ls~(1)lsb(2) 1 lsa(1)lsb(2) + - - ,  (2) 
rab 

J= - S  (ls~(1) rl~a lsb(l) ~ --X (lsb(2) r~2 1",(2) ~ 

+ lsa(1)lsb(2) 1 ls,(2)lsb(1) + - - .  (3) 
rab 

I t  must  be emphasized that  the Q and J as used in the VB theory  are different f rom 
the C o u l o m b  and exchange integrals of  the M O  theory  where C o u l o m b  and 
exchange integrals are usually defined as the third terms in (2) and (3) respectively. 
F r o m  (1) the energy separat ion is 

1E - 3E = 2 ( J -  QS 2) 
1 - S 4 ( 4 )  

In what  follows it will be more  convenient  to consider instead of  the energy 
separa t ion (4) half  of  this quant i ty ;  we have then 

t E_ 3 E j_QS 2 
J12 = 2 - 1 - S 4 (5) 

I t  is impor tan t  to distinguish between the cases of  o r thogona l  and non-or thogona l  
orbitals.  In the fo rmer  S =  0, and f rom (5) and (3) the half-energy separat ion 
becomes 

J12 = J= ( lsa(1)lsb(2) r~21Sa(2)1sb(l ) ~ (6) 

that  is, the exchange integral of  M O  usage. This is always p o s i t i v e -  see, for instance, 
the books  by Slater I-15] and Pilar [16]. Hence one is led to the clear predict ion that  

1 Dance has shown [11] that the Heitler-London wave functions are more suitable than the LCAO 
wavefunctions for the study of the exchange interaction. 
z For further details see, for instance, the book by Murrell et al. [14]. 
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the triplet state has then the lower energy. It is, therefore, non-orthogonality which 
can make the spin singlet state lower in energy than the spin triplet; this, of course, is 
the case with the hydrogen molecule where it is found that the exchange integral (3) 
is negative, hence from (1) the singlet state is lower in energy than the triplet. 

2.3. Spin-Hamiltonian Formulation 

Because the function s(s+ 1) -  1 has values of - 1 for the singlet and + 1 for the 
triplet, and is algebraically equal to �89 + 261" o 2 (Dirac's identity [ 17]), it is possible to 
exploit the fact that the singlet and triplet states are eigenfunctions of 62 with 
eigenvalue s(s + 1) in order to give a general spin-operator expression for (1). This 
has far-reaching consequences, in that it permits the use of the spin variables as a 
basis for the calculation. The spin variables are relatively easy to handle since in their 
use there are only two linearly independent functions of spin for each electron rather 
than the three required to describe the orbital motion. One further advantage of 
working in "spin-only" space is that the interaction energies arise directly as a linear 
combination of the coefficients of spin variables, while in the usual "spinless" 
formalism one has to calculate energy differences. This, apart from simplifying the 
algebra (one has to calculate one quantity instead of two), becomes very important 
when one takes into consideration the fact that the quantities involved are very small 
and it is probably more accurate to calculate them directly [18]. 

2.3.1. Orthogonal Orbitals 

In this case, one can immediately write the spin Hamiltonian 

~ s  = Q - J(�89 + 2o1" 62) (7) 

which is such that the expression 

E =  <OlY410> 

gives E = Q + Jwhen O is a spin singlet eigenfunction, and E = Q - Jwhen O is a spin 
triplet eigenfunction. 

The spin-dependent part of 3q~s is the well known Heisenberg Exchange Hamiltonian 
[19] 

" ~ e x  = - -  2Jol "62 (8) 

so that the coefficient of ol "o2 gives directly the interaction energy 1 E - 3 E = 2 J .  

Although the above development suggests that exchange effects are formally 
equivalent to a vector coupling of electron spins (the Dirac Vector Model [20]), it 
must be remembered that, apart from small magnetic effects, there is no physical 
coupling between the spins [21, 22]. 
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2.3.2. Non-Orthogonal Orbitals 

From (1) the interaction part of the energy of the singlet and triplet state is 

Q+_J 
1 / 3 E i m -  1 _+ S 2' (9) 

and this can be written, after a binomial expansion of the denominator to order S 4, 
as 

1/3Ein t = (1 -~ 3 2 q- S4)(Q +.% J ) .  (10)  

Putting again the operator �89 + 2/01'/52 in place of the T signs in the above equation, 
we have the spin-Hamiltonian 

af ,  = E o - 2Jlol '/52 - 4J2(/51'/02) 2 (11) 

where 

E o = (  1 $2 4 \ /  J \ ,  

J~ = J(1 + S 2 + S 4) - QS  2, (13) 

J2 = j g 2 .  (14) 

The half-energy separation is found from (9) 

1 E _  3 E j _  QS  2 
2 - - J 1 2  = 1 _ S  4 ~ J ( I + S 4 ) - Q S  2. (15) 

Comparing (15) with (13) and, (14), we see that 

J12 = J t  - ']2- (16) 

That is, strictly speaking, we have lost the simple result of the orthogonal case [cf. 
Eq. (6)]. However, it is a good approximation to neglect in (13) and (15) the powers 
of S as compared to unity, and by doing so we obtain 

"-gt~ex = -- 2J1/51 "/02 (17) 

and 

J12 = J1 = J -  Q $2. (18) 

That is, in this case J1 is not exactly the "true" exchange integral, J, of Heisenberg. 
Similarly, J12 can take now both positive and negative values. 

2.4. Comparison with L6wdin's Spin Hamiltonian 

L6wdin [-23] has derived a spin Hamiltonian of the form 

Jr" s = E{) - 2J12/01 "/02 (19) 

for a two electron system by defining the "exchange integral", J12, as the half-energy 
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separa t ion  between the spin singlet and triplet states, and then considering the 
relat ion ' 

E = I ( 1 E  -l- 3 E )  - �89 - 3E) .  (20) 

In  this, ~c = - 1 gives E = 1E and ~c = + 1 gives E =  3E. This led him to substi tute the 
opera to r  �89 + 2o1.~ 2 for  the symbol  x in (20), thus obtaining the spin Hami l ton ian  
(19) with 

E• = �88 33E). (21) 

He  concluded tha t  (19) "is an exact  fo rm of  the vec tor -model  formula ,  independent  
o f  any assumpt ions  abou t  correlat ion,  non-or thogonal i ty ,  polar  states, relativistic 
effects, etc." .  I t  follows tha t  an equivalence should exist between (11) and  (19) and 
this we now demonst ra te .  

F r o m  (21) and (10) we find (to order  S 4) 

E o = ~ (  E + 3  E)= I + ~ - + S  4 Q-  -3jSZ, 

so that,  f rom (12) and (14), we have 

E~ = Eo - 3J2. 

Now,  f rom (11), we have 

~et~ = Eo - 2J~ol �9 o2 - J2(�89 + 2o~. ~2) 2 + ~ + 2J2~ 1 '.~2 

= Eo - �88 - 2 ( J l  - J2)ol "~2 

= E~ - 2J12o 1 "~2 

the final result being Eq. (19), with J~2 interpreted as equal  to J~ - J 2  (cf. Eq. (16)). 
However ,  if one is to calculate an interact ion energy directly, i.e. wi thout  first 
calculat ing the individual  energies of  the two states, then one has to use (11), so tha t  
Eq. (19) has no computa t iona l  advantages .  

3. N-Electron Antiferromagnetic and Ferromagnetic Systems 

3.1. Spin Hamiltonians for Orthogonal Orbital Bases 

For  an N-electron system the normal ized wave funct ion is 

1 
= -  ~ ~ [ O ( r l , . . . ,  r~)O(sl  . . . .  , sN)], 

x/N! 
where O is the orbi tal  pa r t  (usually a Har t ree  product) ,  O is the spin part ,  d is the 
an t i symmetr izer  so tha t  the energy is given by solving 

~' (_ 1)P(f2lfft~- El~O)(O I ~ ~  = 0  (22) 
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where N~ and N~ are permutation operators acting on orbital and spin functions 
respectively, and the summation is carried over the N!/2  "~ permutations which differ 
by more than an interchange of identical orbitals in the configuration R~ (N is the 
number of electrons and r e is the number of filled orbitals) 3. 

For  orthogonal orbitals, the only non-vanishing contributions to (22) arise from 
permutations involving single interchanges, so that 

i,j 

On replacing ~ )  by �89 + 2o~.oj we obtain the spin Hamiltonian 

(23) 

~ s  = Q - Z Jij(�89 + 2~i " @ 
i,j 

of which the spin-dependent part gives the exchange Hamiltonian 

?/A nB 

~ex = - 2 Z Ji~oi'oj : - 2 ~ Z Jijoi "~ (24) 
i,j i=1  j = l  

where the labels i and j refer to atoms of different types, A and B. 

Van Vleck [25] has shown that when the unclosed shells of each atom are in a state 
such that the orbital part of the angular momentum has been quenched, the 
exchange Hamiltonian (24) can further be written 

?/A nB 

~ex = - - -  5~g" J B  ~ ~ Jij = - 2JAB50A" Y , ,  (25) 
HAHB i ~ 1 j ~ 1 

w h e r e  ~fA ~ ~ i  di, ~PB ~ ~Qj/Jj, HA a n d  n B a r e ,  respectively, t h e  n u m b e r  o f  unpaired 
spins for atoms A and B, and JAB is the exchange integral between the total spins of 
the two atoms on the assumption that the exchange integral is independent of the 
electron state. When, however, there is an orbital contribution to the angular 
momentum, Eq. (25) is not applicable as there is then more than one state of 
maximum multiplicity. 

3.2. Spin Hamiltonians for  Non-Orthogonal Orbital Bases 

Spin Hamiltonians such as given above have been widely used in the interpretation 
of data in antiferromagnetic systems, systems in which, almost invariably, the 
orthogonal orbital assumption is invalid. This practice has provoked strong 
criticism, particularly by Slater [26]. The immediate question which arises is that of 
whether it is possible, theoretically, to justify the use of spin Hamiltonians in these 
situations and, if so, what interpretation is to be placed on the J values so obtained. 

3 In a superexchange interaction between two transition metal ions the cation's singly occupied d 
orbitals interact via the filled p orbitals of one (or more) intervening anions. Following Serber [24], in the 
case of filled orbitals the set of N! permutation operators is partitioned into 2 '~ subsets each having N!/2"" 
elements. Serber showed that one has then to consider only one of these subsets, the so-called 
"independent set". 
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In the present work, the following notations will be used 

<Ol~l~'o> - Hp, 
<f21 ~f2) =_ Tp, (26) 

<o i ~oo> =_es. 

The Hp's are sums of one-electron and two-electron integrals multiplied by products 
of overlap integrals. The Tp's are, generally, products of overlap integrals. 

Equation (22) for the energy can now be written 

~' (- 1F<E21~- EI~O><O I ~ O >  =~' (- 1)P(Hp-ETp)ps=o 
~' p 

(27) 

from which we find 

/t,+ Z' (-1)"/# ,Ps' 
E - P' ~ I (28) 

1 + Z' ( -  1)PTP "Ps" 
P ' ~ I  

or, after a binomial expansion of the denominator, 

We note that the squared and higher-order terms involve, respectively, squares and 
higher powers, as well as cross products of overlap integrals, and, therefore, we 
neglect these terms, (29) becoming 

E=I1-F~,;I(-I)PTp, ps']IH~+e~ (-1)PHp, pS' ]. (30) 

Now, any permutation operator which involves more than one interchange can 
always be written in terms of single-interchange permutation operators. Thus, 

~ j :  ~,~j 
~kt, ij : �89 + ~/j) (31) 

the latter relation resulting on placing the restriction ~/,t = - 1, i.e. the electrons k 
and l belong to the same orbital. This suggests that we can partition the set of 
permutation operators into two subsets, one including those operators, ~i, which 
act on both the electrons, (i,j), involved in the magnetic interaction, the other 
including the remaining operators, Nni, (hi standing for non-interacting). 
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As an example, let us consider the case of a four-electron system with (3, 4) being the 
pair of interacting electrons; then, 

{~i} = {~34, ~134, ~234, ~143, ~243, ~13, 24, ~14, 23} 

that is, we have partitioned the "independent" set of permutation operators {~i.a} 
into {Ni} and {~n~}, so that {Ni,a} = {Ni} u {N,i}. 

Considering only one pair, (i,j), of interacting electrons, we now write (30) as 
follows 

E = [ I -  ~ '  (-1)PTp~P"~'-~'(-1)PTp~P~'i? 
pn i~: I ,p i  pi 

Since the two states, the singlet and the triplet, differ only in the spins of the 
interacting electrons, it is apparent that the energy difference will result only from 
the terms containing the P "  i,s. Now, P~j = - 1 for the singlet and + 1 for the triplet. 
Hence it follows that 

-2 ' ( -1)Papi f fs ' i I l -2:( -1)PZP~JPs'ni l ' l"~ l ",~i 

aE_3 E 
2 

(32) 

where the fis'i's are the matrix elements of the coefficients of the ~ , i ' s  in the 
expansion'of the latter operators in terms of ~ j .  For instance, from Eq. (31) we 
obtain 

~s __ s Pkij -- Pki 

P~j= l and Pkl, lj-- ~. 
We now turn to the spin-Hamiltonian formulation of the problem, following the 
procedure that we have used in Sect. 2.3. After the expansion of the permutation 
operators in terms of ~ j ,  we leave ~ j  unspecified and express it by means of the 
Dirac's identity. This process gives a spin Hamiltonian of the form 

oft:  s = E o - 2 l ,  o i  . o j - 4 J 2 (  ~ i �9 /S j )  2 , 

where 

(33) 

E~ 1-~((-1)pT~nIP~'ni 1 ] p=i --~ 2" (-- 1)PTP~ ~s'i 
pi 

• [H,+~i ('-l)pHt=,P',ni+ ; ~[ (- 1)PHp3~,i], (34) 
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Jl=~'p, (-1)PTP~ffs'i[ H~§ n* (-1)PHen*ps'ni] 

-~'(-1)PHP'ffs'J[ 1 - ~ ' e '  e-' (-1)PTe~Ps"i-~'P, (-l)PTe~ps'~l' (35) 

Jz = ~' (-  1)PHP~ fis'i ~" (- 1)PTF~/~s'i. (36) 
pi pi 

Comparing (32), (35), and (36), we see that 

1E_3 E 
2 J1 - J2 (37) 

analogous to the result obtained previously in our treatment of  the hydrogen 
molecule. 

Neglecting in (32), (34), (35) and (36) 

a) all those terms which occur together with but which are small compared to unity, 
and 

b) all those terms which occur together with but which are small compared to Hz, 

we obtain ~ 

1E_3 E 
-- J1 = - ~ '  ( - 1)P(HP i - H, Tpi) ffs'i (38) 

2 p~ 

Eo=HI. (39) 

At this point we note that one can arrive immediately at Eq. (38) by replacing Ein  all 
terms in (27) except in the term Hz - E by its zero-order approximation HI.  This 
process has been followed by Keffer and Oguchi [6], and by Huang and Orbach [ 7 -  
9], in their treatment of  particular systems, and is described as equivalent to 
perturbation theory. This substitution simplifies our discussion of configuration 
interaction. 

3.3. Configuration Interaction 
The analogy between the hydrogen molecule and the single magnetic configuration, 
manifest in the application of the Heitler-London method to the latter problem, also 
prompts  a refinement in the analysis. Just as the method over-emphasizes the left- 
right correlation in H2, a defect which can be ameliorated by the mixing of ionic 
states into the ground state [277, so a similar situation may hold in the present case. 
It is to be noted, however, that it has recently been argued that this is not so [28]. 
Certainly, it is clear that the method, with or without ionic refinement, is generally 

4 Notice that these are analogous to the approximations used in the proof of the validity of the 
Heisenberg Spin Hamiltonian in the case of the hydrogen molecule. This is another indication of the 
analogy between the hydrogen molecule and antiferromagnetic systems 



The Heisenberg Exchange Integral in a Non-Orthogonal Basis 105 

inappropriate at very large internuclear distances. This particular problem has been 
studied by Herring who, however, neglected higher-order permutations [29, 30]. 

3.3.1. The Interaction between Two Configurations 

The matrix element connecting configuration R t with configuration Rj is given by 
Serber's formula 1-24] 

(~f - E )  R~m =x/2 "'-rJ ~'  ( -  1)v(f2R,lJt" -EI~*f2Rj)(OR~ [ #~ORj),  (40) 

where rx equals the number of pairs of filled orbitals in configuration R~(r~ >i. r j), and 
the summation is carried over the N !/2 r1 permutations which differ by more than an 
interchange of identical orbitals in R I (N is the number of electrons). 

Using the notations of  (26), Eq. (40) assumes the form 

( ~  - E)R'R~= ,,f  2r'-rJ[~" (-1)PHZeJP~- E 2 '  (-1)VT~J (41) 

Replacing E in all terms in (41) by its zero-order approximation H} a, where 
configuration R t is the ground state configuration, we find the following expression 
for ( ~  - E) R~R" 

( ~  - E) "~"J = xf2 r~- ~(E~ J - 2J~Jol �9 ~j) (42) 

with 

. E I o J - H I J - H / 1 T I I J -  < ~ '  ( _  l ) P ( H I p J = i _ U 1 1 T I J  ~ps, n. ~-- ~ p n i / x  
plai :~ jr, p i  

1 2 '  - H ~  1THag''i (43) + ~  ( -  1)P(Hg , , , ,  , 
piT~l, pni 

J~J= - -2 '  (-- I~PCU ~ r~XXTH~s,i ~J ~ P~-- -  ~ ~e~,~ . (44) 
p i  

Thus, we have the same formula for the half-interaction energy as (38). However, the 
spin-independent energy E~ J differs from the one-configuration case because T~ ~ 
=1,  but T ~ I  ( l~J )  5. 

3.3.2. The General Configuration Interaction Problem 

In order to solve the general CI problem, one has to solve the following secular 
equation 

( -  1)"~ aJ(3'Y - E)~L'(~ -- E) 2L2.'. ( ~  - E) KL~ = 0 (45) 
g~1~ g 

Notice, that the binomial expansion of the denominator in (28) - which is now 
TU+ x ~ ' z  z_,P,.z ( - 1)PT~ J,p~'- 

is not now straightforward, but depends on the particular problem under study. 
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where K is the number of configurations under consideration and the permutation 
operator ~L~ forms K! different permutations of the column indices L ~ ,  L z  . . . .  , L k  

with the row indices being in natural order. The matrix element connecting 
configuration R~ with the configuration R j  ( I J  # 11) is approximately given by (42). 
For  ( 2 , g - E )  RIRa we use the expression [cf. (38) and (39)] 

( ~ - -  E )  R1R1 = H I ~ - 2 J ~  ~ . ~ -  E .  (46) 

Using (42) and (46) in (45), we find the following spin Hamiltonian 

S-- ~t~t LT11 _ _  2j~l~3i.oj 

( --  1)P~@~Je(E 1L~ - 2 J l L ~ o i  �9 o j ) ' ' '  ( E  KLK - 2 J ~ L K o I  "Oj) 

+ t.~ * t (47) 

Z ( - 1)~2L~q(E~ z~ - 2 J ~ : ~  ' ~s)'"" ( e ~  LK - 2J~LKO~ ' r 
L j r  1 

where 

K , y ~ K  
~ % ~ - g ' = l l r e ' - r L g  I l ' ] ~ N ~  rt'=21r.'--rLn'l (48) 

We expand the terms in (47) as follows 

( E  1L~ - 2 J ~ L ~ o  i . o j ) .  . . ( E ~  L ~ : -  2 J ~ L K o I ' O S )  

EoIL, r-KL~ ,~C, IL~rZL~r3L~ .E~L~,+tEL~rlL,p3L~ ..EoKL~, 
= ' " " ~ m 0  - - ' ~ k a l  a - ' 0  a - ' 0  " " a l  u 0  ~ ' 0  " 

IKLKI21LtI72L2 . . E (  K-1)L(K 1)]0 i.Oj 
+ ' ' "  4 - " 1  ~ '0  ~"0 " 

4[ I1L112L2K'3L2]~4L4. IyKLK l lL l  l3L3p2L2~?4L4 
- -  - -  O l  o 1-'0 "-'0 " " ~ 0  - - " 1  ~' l "~0 ~ 0  " " " E K L x  

_ j ( l r -  ~)~(~- ~ tKLK r ; tL ,  ~,ZL . . . .  E ( o r -  2)L~:_ 2)](01. O~):. 
. . . . .  a l  ~ 0  ~ 0  

(49) 

The coefficient of ~- oJ involves only terms of the form j~s, while the coefficient of 
(oi" os) 2 involves terms of the form "IllalMNo1 6. The square (and the higher powers) of J1 
produces a final coefficient of (0~. oj) z which is smaller 7 than J~. We, therefore, 
conclude that we need not further consider the square (and higher powers) of the dot 
product ~- os" This reduces the situation to that of the familiar Heisenberg Exchange 
Hamiltonian, 

J~f~e~ = - 2 J t ~ i "  ~ j .  (50) 

From (49) we have 

( E ~  L '  - 2 J l Z l o i "  os)" " "~olPKz" - - o  l"~tKr"~'o~ �9 v j )  

= E ~ L , . . .  E0~L~ [1 _ 2 ( q l ~  + q ~  . . . .  + q ~ ) o , ,  oj], (51) 

6 Had we included the terms - 4J~a(~i . ~)2, the coefficient of (oi- ~j)2 would have also involved terms 
of the form j~s. Je is, however, much smaller than J1 [cf. (35) and (36)]. 
7 This arises because the multipliers of J1 contain, in general, products of overlap integrals. 
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where 

q/L~- J]~' 
E~L~ 

The denominator in (47) can be expanded similarly 

(52) 

E 
L j r  1 

p L j  2L2 2L2 - 1) ~ n(Eo -2J1 ~ . ~ ) - . . ( e o  ~ - 2 s ~ ' ~ % . ~ )  

=-E 22..-  E~ L~ {1 - 2(q~ 2 + - . .  + q~r)o i .oj 

} + Z (--1)P~L~t/ ~ .EoK K [1--2(q~L~+. . .  +q~L")Oi-oj] , 
L j ~  I , ~ 3 r  

(53) 

Noting that the integral HI  I is, in general, much greater than the integral HI  J ( I #  J), 
(this is because the latter contains as factors overlap integrals), we can expand the 
denominator in (47) [in the form given by (53)] according to the binomial theorem. 

We obtain 

J f s  = H~ 1 - 2J 1 lol- ~ + {1 + 2(q 22 + . . .  + qKK)~ a. ~) 

Z v L~ + qKLK)~ i" ~j] - ( - 1 )  ~ 3  r/ E~2 .  ..Eo~/~ [ 1 - - 2 ( q ~ L ~ +  - . .  
L j r 1 6 2  

• ~ ( - l y ~ e  ~o22- ~-~oKK [I--2(qlL~+'''+q~LK)O~'~j]. (54) 
L l , e l  

The coefficient, Jij, of -2~i. @ in (54) is 

Jij=Jll+ 1 -  ~ ( - 1 ) P ~ J q  ~ooZ2.:.EoKr 
Lj7~1, ~r I 

E~L . . . .  EKLK (qlL~ +...  + q~LK)J 
• [~Z 1 ( -  lY~J~ ~o~ :..~o~ 

[ ~ EgL2"''EKLK (q 2L~ +qKL,,)l 
- ( - 1 ) p ~ J t /  Eo22. Eo KK + ' "  

L 1 

Eo L . . . .  

• ~Z ( -  1 ) . ~  eo~...eo ~ _1 
(55) 

Equation (55) is a general formula for the calculation of the exchange integral for a 
single exchange pathway with inclusion of CI but in the absence of spin-orbit 
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coupling. Although (55) looks cumbersome, in practice, at least as far as simple 
systems are concerned, it is not so complex. We shall report elsewhere on the results 
obtained from its use. 

4. Conclusion 

We have shown that the Heisenberg spin exchange Hamiltonian (50) is a good 
approximate Hamiltonian for the estimation of the exchange interactions in 
antiferromagnetic and ferromagnetic systems irrespective of the particular model 
(single configuration, configuration interaction) used in the approach. We have also 
examined the relationship between several approaches to the energy separation 
between the lowest singlet and triplet of the hydrogen molecule as well as the 
connection between the hydrogen-molecule approach and the general N-electron 
magnetic configuration. Finally, we have derived a new formula for the estimation 
of the "exchange integral" in the general magnetic configuration. 

We conclude this paper with a review of the approximations upon which we have 
established the validity of (50). Had we not made any approximations, we would 
have found that the correct spin exchange Hamiltonian would have been 

= E0 _ 2j1~ 1 .o 2 _ 4J2(~i ' ~2)2 _ 8J3(oi " @ ) 3 . . .  (56) 

spin-orbit effects being neglected. With (56) the energy is given by E =  ( O l ~ ] O ) .  
Now, it is readily found that 

( = _ 3 (singlet) ( Ol~i. @ 
O ) )  " = �88 (triplet) 

= 9 (singlet) 
(O1(~i-o~)2[O) =~6 (triplet) 

~s)alO)f ) = - ~ (singlet) ( Ol(~i. 
= ~4 (triplet) 

etc. Thus we calculate the energies of the singlet and the triplet states as follows 

~e=Eo +3Jl-~.l~ +zJJ3_+... 
3E=Eo- �89  a 1 - ~ J 2 - g J 3 ~ +  ' "" 

so that 

1E_3 E 
- J 1  - J 2  +7J3  - t - . . . .  (57) 

2 

Our objective, therefore, has been to examine whether the terms beyond Ja are 
numerically important. The discussion following Eq. (29) indicated that terms 
beyond J2 could be neglected. We had, however, to carry the discussion further, 
before [Eq. (49) et seq.] we obtained conditions which enabled J2 to be discarded. 
However, it must be recognized that specific cases may exist where the neglect o f J  2 is 
not justified 1-31, 32]. 



The Heisenberg Exchange Integral in a Non-Orthogonal Basis 109 

Acknowledgements. One of us (GRT) is indebted to the "State Scholarships Foundation" of Greece for 
financial support. We are grateful to Professor O. Kahn for helpful discussions and to NATO for 
enabling them. 

References 

1. Anderson, P. W.: Phys. Rev. 79, 350 (1950) 
2. Anderson, P. W. : Phys. Rev. 115, 2 (1959) 
3. Kanamori, J.: Phys. Chem. Solids 10, 87 (1959) 
4. Goodenough, J. B.: Phys. Rev. 100, 564 (1955) 
5. Goodenough, J. B.: Phys. Chem. Solids 6, 287 (1958) 
6. Keffer, F., Oguchi, T.: Phys. Rev. 115, 1428 (1959) 
7. Huang, N. L., Orbach, R.: Phys. Rev. 154, 487 (1967) 
8. Huang, N. L.: Phys. Rev. 157, 378 (1967) 
9. Huang, N. L.: Phys. Rev. 164, 636 (1967) 

10. McWeeny, R., Yonezawa, F.: J. Chem. Phys. 43, S120 (1965) 
11. Dance, I. G.: Inorg. Chim. Acta 9, 77 (1974) 
12. Heitler0 W., London, F.: Z. Physik 44, 455 (1927) 
13, Sugiura, Y.: Z. Physik. 45, 484 (1927) 
14. Murrell, J. N., Kettle, S. F. A., Tedder, J. M. : Valence theory, 2nd Edn., Chapt. 11. London : Wiley 

1970 
15. Slater, J. C.- Quantum theory of atomic structure, Vol. I, Appendix 19. New York: McGraw-Hill 

1960 
16. Pilar, F. L. : Elementary quantum chemistry, p. 285. New York: McGraw-Hill 1968 
17. Dirac, P. A. M. : The principles of quantum mechanics, 4th Edn. (revised), Chap. IX. Oxford: 

Clarendon Press 1958 
18. Dacre, P. D., McWeeny, R. : Proc. Roy. Soc. (London), Ser. A. 317, 435 (1970) 
19. Heisenberg, W. : Z. Physik. 38, 417 (1926); 39, 499 (1926); 41, 239 (1927) 
20. Dirac, P. A. M. : Proc. Roy. Soc. (London), Ser. A 123, 714 (1929) 
21. McWeeny, R. : Spins in chemistry, Chapt. 2. New York and London: Academic Press 1970 
22. Martin R. L., in: New pathways in inorganic chemistry, Chapt. 9, Ebsworth, E. A. V., Maddock, A. 

G., Sharpe, A. G., Eds. Cambridge: University Press 1968 
23. L6wdin, P. O.: Rev. Mod. Phys. 34, 80 (1962) 
24. Serber, R.: Phys. Rev. 45, 461 (1934) 
25. Van Vleck, J. H.: Rev. Univ. Nacl. Tucuman, Series A14, 189 (1962) 
26. Slater, J. C.: Rev. Mod. Phys. 25, 199 (1953) 
27. Murrell, J. N., Kettle, S. F. A., Tedder, J. M. : Valence theory, 2nd Edn., Chapt. 12. London: Wiley 

1970 
28. Kahn, O., Briar, B.: J.C.S. Faraday II 72, 268 (1976) 
29. Herring, C.: Rev. Mod. Phys. 34, 631 (1962) 
30. Herring, C., in: Magnetism, Vol. IIB, Chapt. 1, Rado, G. T. and Suhl, H., Eds. New York and 

London: Academic Press 1963 
31. Anderson, P. W., in: Solid State Physics, Vol. 14, p. 99. Seitz, F. and Turnbull, P., Eds. New York 

and London: Academic Press 1963 
32. Ikeda, H., Kimura, I., Urfi, N.: J, Chem. Phys. 48, 4800 (1968) 

Received May .25, 1976~November 30, 1976 


